ST.ANNE'S
COLLEGE OF ENGINEERING AND TECHNOLOGY
(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
(An ISO 9001:2015 Certified Institution)
ANGUCHETTYPLAYAM, PANRUTI-607 106.

QUESTIONS BANK

CS8501-THEORY OF COMPUTATION

UNIT-1

FINITE AUTOMATA

PART-A

1. What is a finite automaton? (Nov/Dec 2015)
2. What are the Applications of Automata theory? [May - 2008]
3. What is Induction principle? Give an example. [NOV/DEC 2012]
4. Draw a non-deterministic automata to accept strings containing the substring 0101. (may2016)
5. State the pumping lemma for regular languages. (may/June 2016)
6. Write Regular Expression for the set of strings over $\{0,1\}$ that have atleast one.(NOV/DEC-2015)
7. What is meant by DFA? [MAY/JUNE 2013]
8. What is a Non-Deterministic Finite Automaton (NDFA)? (Nov/Dec 2013)
9. Obtain the \square closure of states q0 and q1 in the following NFA with \square transition?[Dec 2014]

10. Define NFA with ε transition. [MAY/JUNE 2013] [APR/MAY 2018]
11. Difference between DFA and NFA.
12. What is a Regular Expression? [NOV/DEC 2012].
13. What are the applications of pumping lemma? [NOV/DEC 2007]
14. Construct a DFA for the regular expression aa*bb*.
15. What is $\{10,11\}^{*}$?
16. Construct NFA for regular expression $a^{*} b^{*}$.
17. Construct a DFA that will accept strings on $\{a, b\}$ where the number of b 's divisible by 3 .
18. Differentiate L^{*} and L^{+}.
19. Construct the DFA that accepts input string of 0 's and 1 's not containing 101 as substring. [APR/MAY 2018]
20. Differentiate regular expression and regular language.

PART-B

1.Explain inductive proof with example.(13)
2. Write about the various form of proof.(7)
3. Prove that "A language L is accepted by some DFA if and only if L is accepted by some
NFA"(13)
4. consider the following ε-NFA for an identifier. Consider the ε-closure of each state and find
it's equivalent DFA.(13) or (14)

5.convert the given NFA to DFA.(13)

state/input		0
1		
$\rightarrow \mathrm{q} 0$	$\{\mathrm{q} 0, \mathrm{q} 1\}$	q 0
q 1	q 2	q 1
q 2	q 3	q 3
$* \mathrm{q} 3$	φ	q 2

6.Write any one example for NFA- ε to NFA without ε.(6)
7.Construct the minimal DFA for the regular expression ($b \backslash a$)*baa.(13).
8. Write and explain the algorithm for minimization of a DFA. Using the above algorithm minimize the following DFA. (May/June 2016)(14)

9.State pumping lemma with example.(13)
10.Describe the closure properties of regular languages. [APR/MAY 2018]
11.Determine DFA from a given NFA

$$
\begin{aligned}
& \mathrm{M}=(\{\mathrm{q} 0, \mathrm{q} 1\},\{0,1\}, \delta, \mathrm{q} 0,\{\mathrm{q} 1\}) \text { where is given by } \\
& \delta(\mathrm{qo}, 0)=\{\mathrm{q} 0, \mathrm{q}\}, \delta(\mathrm{q} 0,1)=\{\mathrm{q} 1\}, \delta(\mathrm{q} 1,0)=\varphi, \delta(\mathrm{q} 1,1)=\mathrm{q} 0, \mathrm{q} 1\} \quad[\text { APR/MAY 2018] }
\end{aligned}
$$

UNIT-II

GRAMMERS

PART-A

1.Define a Context Free Grammar. [**May/June 2010**]
2.What are the applications of Context free languages? [**Dec 2009**]
3.What is: (a) Derivation (b) Sub tree.
4.What is an ambiguous grammar? [**Dec 2009**]
5.Construct the grammar for the language $L=\left\{a^{n} b a^{n} \mid n>=1\right\}$.
6.Construct the context-free grammar representing the set of palindromes over $(0+1)^{*}$ (Nov/Dec 2015)
7.Let the productions of a grammar be $\mathrm{S} \rightarrow 0 \mathrm{~B}, \mathrm{~A} \rightarrow 0 / 0 \mathrm{~S} / 1 \mathrm{AA}, \mathrm{B} \rightarrow 1 / 1 \mathrm{~S} / 0 \mathrm{BB}$. For the string 0110 find a right most derivation. [**MAY/JUNE 2007**]
8. Construct a context free grammar for generating the language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$
(Nov/Dec-2004, 2010, 2013, May-05, 06)
9.Convert the following grammar into an equivalent one with no unit productions and no useless symbols $\mathrm{S} \rightarrow \mathrm{ABA}, \mathrm{A} \rightarrow \mathrm{aAA}|\mathrm{aBC}| \mathrm{bB}, \mathrm{B} \rightarrow \mathrm{A}|\mathrm{bB}| \mathrm{Cb}, \mathrm{C} \rightarrow \mathrm{CC} \mid \mathrm{cC}$.
(Nov/Dec 2011)
10.When a grammar is said to be ambiguous? (May 2013) [APR/MAY 2018]
11. Consider the following grammar G with productions (May 2010)

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BaB} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{BaC}| \text { aaa } \\
& \mathrm{B} \rightarrow \mathrm{bBb} \mid \mathrm{a} \\
& \mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC} .
\end{aligned}
$$

12.Let G be the grammar $\mathrm{S} \rightarrow \mathrm{aB}|\mathrm{bA}, \mathrm{A} \rightarrow \mathrm{a}| \mathrm{aS}|\mathrm{bAA}, \mathrm{B} \rightarrow \mathrm{b}| \mathrm{b}|\mathrm{S}| \mathrm{aBB}$. For the string aaabbabbba find a leftmost derivation.(May/June’07)(Apr/May‘08)(Nov/Dec 2015) 13. What do you mean by null production and unit production? Give an example.
14.Construct a CFG for set of strings that contain equal number of a's and b's over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ (May/June 2016)
15. What is meant by left and right sentential form?
16. Find the grammar for the language $L=\{a 2 n b c$, where $n>1\}$
17. Find the language generated by a CFG. $G=(\{S\},\{0,1\},\{S \rightarrow 0 / 1 / \epsilon$, $\mathrm{S} \rightarrow 0 \mathrm{~S} 0 / 1 \mathrm{~S} 1 / \mathrm{S}\}$)
18. Define Chomsky Normal Form? [APR/MAY 2018]
19. Derive the rules to remove ϵ productions with an suitable example (Dec'09)
20. Find the grammar for the language $L=\left\{a^{2 n} b c\right.$, where $\left.n>1\right\}$

PART-B

1) Derive the strings $a^{*}(a+b 00)$ using leftmost and rightmost derivation for the following production.(8)
1. $\mathrm{E} \rightarrow \mathrm{I}$
2. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
3. $\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E}$
4. $\mathrm{E} \rightarrow(\mathrm{E})$
5. $\mathrm{I} \rightarrow \mathrm{a}$
6. $\mathrm{I} \rightarrow \mathrm{b}$
7. I \rightarrow Ia
8. $\mathrm{I} \rightarrow \mathrm{Ib}$
9. I $\rightarrow \mathrm{I} 0$
10.I \rightarrow I1
10. Show that the grammar $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \mathrm{e}$ is ambiguous and what is the language generated by this grammar? (Nov/Dec 2006)(8)
11. The following grammar generates the language of Regular expression $0^{*} 1(0+1)^{*}$.
```
S->A1B
A->0A G
B}->0\textrm{B}| 1B|
```

Give leftmost and rightmost derivations of the following strings
00101 b) 1001 c) 00011 (May/June 2006) (16)
4. Given the grammar $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{E})$, where
$\mathrm{V}=\{\mathrm{E}, \mathrm{D}, 1,2,3,4,5,6,7,8,9,0,+,-, *, /,()$,
$\sum=\{1,2,3,4,5,6,7,8,9,0,+,-, *, /,()$,$\} , and \mathrm{R}$ contains the following rules:
$E \rightarrow D|(E)| E+E|E-E| E * E \backslash E \mid E$
$\mathrm{D} \rightarrow 0|1| 2 \mid \cdots . .9$
Find a parse tree for the string $1+2 * 3$. (6) (Nov/Dec 2015) (16)
5. Let G be the grammar $\mathrm{S} \rightarrow 0 \mathrm{~B}|1 \mathrm{~A}, \mathrm{~A} \rightarrow 0| 0 \mathrm{~S}|1 \mathrm{AA}, \mathrm{B} \rightarrow 1| 1 \mathrm{~S} \mid 0 \mathrm{BB}$.

For the string 00110101 find (Apr/May 2004) (May/Jun2007)(8)
6. Find the language $L(G)$ generated by the grammar G with variables S, A, B terminals $\mathrm{a}, \mathrm{b} \quad$ and productions $\mathrm{S} \rightarrow \mathrm{aB}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{B} \rightarrow \mathrm{bA}, \mathrm{A} \rightarrow \mathrm{aB}$.(8)
7. If G is a grammar $\mathrm{S} \rightarrow \mathrm{SbS} \mid$ a prove that G is ambiguous (Apr/May 2004)(8)
8. Show that the grammar $\mathrm{S} \rightarrow \mathrm{a}|\mathrm{Sa}| \mathrm{bSS}|\mathrm{SSb}| \mathrm{SbS}$ is ambiguous (8) (Nov/Dec2007)
9. Find a derivation tree of $a * b+a * b$ given that $a * b+a * b$ is in $L(G)$ where G is given by $\mathrm{S} \rightarrow \mathrm{S}+\mathrm{S} / \mathrm{S}^{*} \mathrm{~S} / \mathrm{a} / \mathrm{b}$ (May/June 2007).(8)
10. Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ be a Context free Grammar then prove that if the recursive inference procedure tells us that terminal string W is in the language of variable A , then there is a parse tree with root A and yields w. (Nov/Dec 2015)(16)
11. Begin with the grammar
$S \rightarrow$ ASB/ ε
$\mathrm{A} \rightarrow \mathrm{aAS} / \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{SbS} / \mathrm{A} / \mathrm{bb}$
(a) Are there any useless symbols? Eliminate them
(b) Eliminate ε productions
(c) Eliminate unit productions
(d) Put the grammar into Chomsky normal form. (Nov/Dec 2015)(16) [APR/MAY 2018]
12. Find the CNF for the following grammar,
$\mathrm{S} \rightarrow \mathrm{aB} / \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{aS} / \mathrm{bAA} / \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bS} / \mathrm{aBB} / \mathrm{b}$. (Nov/Dec 2005) (Nov/Dec 2006)
13. What is the purpose of normalization? Construct the CNF and GNF for the following grammar and explain the steps. [APR/MAY 2018]

```
S->aAa | bBb | €
A}->\textrm{C}|\textrm{a
B}->\textrm{C}|\textrm{b
C}->\textrm{CDE | €
D}->\textrm{A}|\textrm{B}| ab (May/June 2016)
```

14. Convert the following grammar to GNF
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{BS} / \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{SA} / \mathrm{a}$.

UNIT-3

PUSH DOWN AUTOMATA

PART-A

1. Define Pushdown Automata. (May/June 2016)
2. What are the different types of language acceptances by a PDA and define them. (Nov/Dec 2015)
3. Define Deterministic PDA. [APR/MAY 2018]
4. Define Instantaneous description (ID) in PDA. (MAY-06/09)
5. How do you convert CFG to a PDA.
6. State the pumping lemma for CFLs.(May-08)
7. Convert the following CFG to a PDA (Nov/Dec 2015)

$$
\text { i. } \mathrm{S} \rightarrow \mathrm{aAA}, \mathrm{~A} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a}
$$

8. Does a pushdown Automata has memory? Justify. (May/June 2016)
9. Give an example of PDA.(DEC-05)
10. Is the language of DPDA and NPDA same? (MAY-06/09)
11. Define the languages generated by a PDA using the Two methods of accepting a language.(May-07)
12. Construct a PDA to accept a language $\left\{(\mathrm{an})^{\mathrm{n}} \mid \mathrm{n}>=1\right\}$ by empty stack.(Dec-09)
13. Compare NFA and PDA.(Dec-13)
14. Draw the symbols used in PDA.
15. Design PDA for the language $\mathrm{L}=\{001\}$
16. Design PDA for the language $\mathrm{L}=\{0011\}$
17. Define NDPDA.
18. What are the ways of language acceptance in PDA. [APR/MAY 2018].
19. Design DPDA for $\mathrm{L}=\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$ where $\mathrm{n}>=1$.
20. Write algorithm for getting production rule of CFG.

PART-B

INSTANTANEOUS DESCRIPTION:

1.Design PDA to accept the language $\mathrm{L}=\left\{\mathrm{wcw}^{\mathrm{R}} / \mathrm{w}=\{0,1\}^{*}\right\}(8)$ [APR/MAY 2018]
2.Design PDA for the language $\mathrm{L}=\{\operatorname{anb} 2 \mathrm{n} \mid \mathrm{n} \geq 0\}($ Nov/Dec 2008) (8)
3.Construct a transition table for PDA which accepts the Language $\mathrm{L}=\{\operatorname{a3nbn} \mid \mathrm{n} \geq 0\}$ (16)
4.Design a PDA to accept $\{0 \mathrm{n} \ln \mid \mathrm{n} \geq 1\}$. Draw the transition diagram for the PDA. Show by instantaneous description that the PDA accepts the string '0011'. (10) (Nov/Dec 2015)(8)
5.Construct a pushdown automaton to accept the following language L on $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ by empty stack $L=\left\{w^{2}{ }^{R} \mid w \in \Sigma+\right\}($ May $/$ June 2016)(8)
6.Convert the PDA $\mathrm{P}=(\{\mathrm{q}, \mathrm{P}\},\{0,1\},\{\mathrm{X}, \mathrm{Z} 0\}, \delta, \mathrm{q}, \mathrm{z} 0)$ to a CFG if δ is given by
(a) $\delta(\mathrm{q}, 1, \mathrm{z} 0)=\{(\mathrm{q}, \mathrm{Xz} 0)\}$
(b) $\delta(\mathrm{q}, 1, \mathrm{X})=\{(\mathrm{q}, \mathrm{XX})\}$
(c) $\delta(\mathrm{q}, 0, \mathrm{X})=\{(\mathrm{P}, \mathrm{X})\}$
(d) $\delta(\mathrm{q}, \varepsilon, \mathrm{X})=\{(\mathrm{q}, \varepsilon)\}$
(e) $\delta(\mathrm{P}, 1, \mathrm{X})=\{(\mathrm{P}, \varepsilon)\}$
(f) $\delta(\mathrm{P}, 0, \mathrm{z} 0)=\{(\mathrm{q}, \mathrm{z} 0)\} \quad(16)$
7.Construct CFG for the following PDA where δ is given by,
$\mathrm{P}=(\{\mathrm{q} 0, \mathrm{q} 1\},\{0,1\},\{\mathrm{X}, \mathrm{Z} 0\}, \delta, \mathrm{q}, \mathrm{z} 0, \Phi)$
(a) $\delta(q 0,0, z 0)=\{(q 0, X z 0)\}$
(b) $\delta(\mathrm{q} 0,0, \mathrm{X})=\{(\mathrm{q} 0, \mathrm{XX})\}$
(c) $\delta(q 0,1, \mathrm{X})=\{(q 1, \varepsilon)\}$ (8) [APR/MAY 2018]
8. Convert PDA to CFG. PDA is given by $\mathrm{P}=(\{\mathrm{p}, \mathrm{q}\},\{0,1\},\{\mathrm{X}, \mathrm{Z}\}, \delta, \mathrm{q}, \mathrm{Z}), \delta$ is defined by $\delta(\mathrm{p}, 1, \mathrm{Z})=\{(\mathrm{p}, \mathrm{XZ})\}$,
$\delta(\mathrm{p}, \mathrm{C}, \mathrm{Z})=\{(\mathrm{p}, \mathrm{\epsilon})\}$,
$\delta(\mathrm{p}, 1, \mathrm{X})=\{(\mathrm{p}, \mathrm{XX})\}$,
$\delta(q, 1, X)=\{(q, \epsilon)\}$,
$\delta(\mathrm{p}, 0, \mathrm{X})=\{(\mathrm{q}, \mathrm{X})\}$,
$\delta(\mathrm{q}, 0, \mathrm{Z})=\{(\mathrm{p}, \mathrm{Z})\},(\mathrm{Nov} / \operatorname{Dec} 2015)(16)$

Converting CFG To PDA

9. Construct the PDA for the following grammar $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{a}$ (8)
10.Consider the grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ when $\mathrm{S} \rightarrow \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{aABC} / \mathrm{bB} / \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}, \mathrm{C} \rightarrow \mathrm{c}$ and find the PDA.(8)
11.Construct the CFG for $\mathrm{L}=\{0 \mathrm{n} 10 \mathrm{n} \mid \mathrm{n} \geq 0\}$ and use it to construct PDA.(8) DETERMINISTIC PUSHDOWN AUTOMATA
10. What are deterministic PDA's? Give example for Non-deterministic and deterministic PDA?
(8) (Nov/Dec 2015)

PROBLEMS ON PUMPING LEMMA

13.State pumping Lemma for CFL. Use pumping lemma to show that the language $\mathrm{L}=\{$ aibjck $\mid \mathrm{i}<\mathrm{j}<\mathrm{k}\}$ is not a CFL. (8) [APR/MAY 2018]
14. Show that the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} / \mathrm{n} \geq 0\right\}$ is not a context free language.(8) [APR/MAY 2018]

UNIT-4

TURING MACHINE

PART-A

1. What is a Turing Machine?(MAY/JUNE-16) [APR/MAY 2018]
2. What is a multitape Turing machine?(NOV/DEC-15)
3. Write about the chomskian hierarchy of languages.(APR/MAY-17) [APR/MAY 2018]
4. What is halting problem?(APR/MAY-17)
5. Define instantaneous description and move of a turing machine.
6. what are the features of universal turing machine?
7. What is meant by multihead turing machine?
8. What are the applications of Turing machine? (Dec-12)
9. List out techniques for Turing machine construction.(Dec -13)
10. What are the possibilities of a TM when processing an input string?
11. What are the techniques for Turing machine construction?
12. Differentiate Multitape and Multitrack machines.(Dec-08)
13. When is checking off symbols used in TM?
14. What is a 2-way infinite tape TM?
15. What are the reasons for a TM not accepting its input?
16. Construct a Turing machine to compute ' $\mathrm{n} \bmod 2$ ' where n is represented in the tape in unary form consisting of only 0 's. (May -11)
17. Design a Turing machine with not more than states that accepts languages $a(a+b)^{*}$.

Assume $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ (May-05).
18. What are the Comparison of FM, PDA and TM?
19. Define Power of turing Machine.
20. What are the differences between a finite automata and a Turing machine?(APR/MAY-16)

PART-B

TURING MACHINE

1.Explain the programming techniques for Turing Machine construction. (14)(Nov/ Dec-12)(13)
2.Explain briefly about Two way Turing Machine.(7) (May/June-04,05, Nov/Dec05,08,09,12,13)

COMPUTATIONAL LANGUAGES AND FUNCTIONS

3.Construct TM for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}\right\}$ where $\mathrm{n} \geq 1$. (May - 09)(7)
4. Construct a TM for $\mathrm{L}=\left\{1^{\mathrm{n}} 0^{\mathrm{n}} 1^{\mathrm{n}} / \mathrm{n} \geq 0\right\}$.(May - 12)(6)
5. Construct TM for performing subtraction of two unary numbers $f(a-b)=c$ where a is always greater than b .(Dec -03,Dec - 05,May -11)(7)

TWO WAY TURING MACHINE

6.Construct a TM for a language having equal number of a's and b's.(7)
7.Construct a TM for a language obtaining two's complement of a binary number.(7)
8. Construct a TM for reversing a binary string on the input tape.(6)
9.Build a multitrack turing machine for checking whether given number is prime or not?(7)
10.Design a turing machine which reverses the given string\{abb\}.(6) [APR/MAY 2018]

TYPES OF TURING MACHINE

11.Explain about Types of Turing machine.(7)

HALTING PROBLEM
12.Explain Halting problem. Is it solvable or unsolvable problem? Discuss.(13) (May/June-16)

UNIT-5

UNSOLVABLE PROBLEMS AND COMPUTABLE FUNCTIONS PART-A

1. When a problem is said to be decidable and give an example of undecidable problem. (Nov/Dec 2015)
2. Show that the complement of a recursive language is recursive.(Dec-04,may-05)
3. Give two properties of Recursively Enumerable Sets which are undecidable.
4. When a language is said to be recursive? Is it true that every regular set is not recursive?(Nov/Dec-05)
5. Differentiate between recursive and recursively enumerable languages.(Apr/May-07)
6. When do you say a problem is NP-hard?(Dec-09)
7. Mention the difference between P and NP problems.
8. What is recursively enumerable? (May-12,Nov/Dec-13) [APR/MAY 2018]
9. Show the union of recursive language is recursive.
10. What are a) Recursively Enumerable b) Recursive sets? (Nov/Dec-13)
11. Define the class NP problem.(Nov/Dec-13)
12. What do you mean by universal turing machine?(Nov/Dec-05,13)
13. Define the classes P and NP problems. (May-14)
14. When a recursively enumerable language is said to be recursive? Is it true that the language accepted by a non-deterministic Turing machine is different from recursively
enumerable language? (May/June 2016)
15. What are the different types of grammars/languages?
16. Define PCP or Post Correspondence Problem?
17. Define MPCP or Modified PCP.
18. What is a universal language Lu? (Nov/Dec 2015) [APR/MAY 2018]
19. Define Rice Theorem?
20. What is primitive recursive function?(May-2017)

PART-B

1. (i) Prove that "MPCP reduces to PCP". (10) (Nov/Dec 2015)
(ii) Discuss about the tractable and intractable problems. (6) (Nov/Dec 2015)
2. (i) State and explain RICE theorem. (10) (Nov/Dec 2015)
(ii) Describe about Recursive and Recursively Enumerable languages with examples.
(6)
3. What is a universal Turing machine? Bring out its significance. Also construct a Turing machine to add two numbers and encode it. (16) (May/June 2016)
4. What is a post corresponding problem (PCP)? Explain with the help of an example.(10) (May/June 2016)
5.Explain recursive and recursive enumerable language with suitable example.(16) (May2017)
6.Explain Tractable and intractable problems with suitable example.(16) (May-2017)
7.Describe about the Universal TM.(7)
8.rite notes on primitive recursive function. [APR/MAY 2018]
9.Write note on NP complete problem and polynomial time reduction. [APR/MAY 2018]
